Web Analytics
Suscríbete
Suscríbete
​Un artículo de Matt Dzugan, director de Data Science en project44

Inteligencia Artificial en la Cadena de Suministro: un tipo de IA distinto para cada ocasión

Pexels pixabay 373543
La inteligencia artificial es algo abstracta, no tiene una definición única, y está abierta a innumerables interpretaciones.
|

Durante los próximos tres años, la implementación de la inteligencia artificial será fundamental, si no lo es ya, para una gestión eficiente y competitiva de la cadena de suministro. Según McKinsey "la capacidad de la inteligencia artificial de analizar grandes volúmenes de datos, de comprender las relaciones, brindar visibilidad a las operaciones de la cadena de suministro y dar soporte para una mejor toma de decisiones hace que la IA sea un factor de cambio potencial".


La IA es algo abstracta, no tiene una definición única, y está abierta a innumerables interpretaciones. De alguna manera, esta es parte de su belleza. La idea de que la IA puede ser cualquier cosa o hacer lo que necesites, ha llevado a muchas empresas a ofrecer soluciones disfrazadas de IA, respondiendo a cualquier problema que puedas imaginarte. El problema es saber si esa IA (si eso es lo que realmente ofrecen) es buena o no. No hay estándares para la IA, no tiene etiquetas, ni calificaciones, ni métricas. Se convierte en conjetura: nadie sabe cuáles son las medidas o cómo definir la precisión.


Separando el grano de la paja

La IA se nutre de datos. No importa como brille la carcasa o como de atractivo sea el tono, la Inteligencia Artificial es tan buena como sus datos. No importa lo sofisticada que sea la IA, los datos de mala calidad la vuelven inútil. Dentro de la logística de la cadena de suministro, cualquier tipo de análisis avanzado y la automatización resultante comienzan con una base de datos de visibilidad de transporte limpios, completos y de calidad. Se estima que el 20-30% de los datos en la cadena de suministro no son válidos. Algunos proveedores de soluciones se toman esto en serio y, de hecho, han creado técnicas de aprendizaje automático para la limpieza de datos, lo que garantiza una base sólida para una visibilidad y un análisis de datos adecuados.


Por ejemplo, sin el más alto calibre de calidad de datos, una plataforma de visibilidad de transporte en tiempo real (RTTV) no puede producir los conocimientos esenciales para la gestión de la cadena de suministro: tiempo estimado de llegada dinámico (ETA), gestión proactiva de excepciones, visibilidad de proveedores y visibilidad colaborativa.


Sin embargo, muchos ejecutivos de la cadena de suministro no comprenden completamente los requisitos de datos de referencia para aprovechar el análisis de la cadena de suministro de manera efectiva. Pero esto no es su culpa. Se requiere un enfoque organizacional para lograr la alfabetización de los datos. Sin embargo, los deja en una situación difícil cuando buscan evaluar soluciones basadas en datos para sus problemas más apremiantes.


Con la promesa de la IA en lo alto, ¿cómo pueden los líderes de la cadena de suministro asegurarse de que no les vendan gato por liebre? ¿cómo seleccionar la solución de IA más adecuada? Incluso la pieza cuadrada más impresionante no encajará en un agujero redondo. La elección de una solución de IA comienza con una pregunta: ¿Qué es lo que realmente quieres de ella? Suena bastante sencilla, pero a menudo se buscan y venden soluciones que no dan en el clavo del problema real.


Por ejemplo, algunas cadenas de suministro dependen de una precisión increíble. Imagina un proveedor que necesita saber cuándo llegarán los camiones al almacén para poder determinar el personal: ¿Necesitan tres trabajadores descargando camiones en este turno?, ¿o necesitan que un miembro del personal descargue camiones en este turno y seis en el siguiente? ¿cuándo tomarás las decisiones sobre los turnos? ¿la mañana antes de que comience el turno, o en el inicio de la semana? ¿cuándo avisarás al personal?


Todos esos escenarios requieren algo un poco diferente de la IA. No se trata solo de precisión, también se trata de la puntualidad y la capacidad de respuesta. Estás buscando una solución que te ayude a decidir dónde y cómo asignar recursos, y con qué frecuencia puedes tomar esas decisiones. La lección es, ¿cuáles son las características de la IA que importan? y ¿cuál es la evidencia de que una solución en particular responde a estos requisitos? Los compradores deben ser específicos y exigentes al evaluar cualquier solución de IA. Del mismo modo, necesitan trabajar con proveedores que puedan trabajar con ellos para determinar el verdadero problema de la cuestión y ofrecer soluciones flexibles que se ajusten a sus necesidades y modelo.


Por ejemplo, es probable que la forma en la que funciona la IA para un minorista de bajo costo se centre principalmente en reducir costes. Sin embargo, una marca de lujo a menudo priorizará la calidad del servicio y la velocidad. El mensaje simple es que la IA no es igual para todos. Desafortunadamente, muchos de los que buscan soluciones comienzan buscando la 'mejor' IA, sin considerar si esa marca de IA es la mejor respuesta a su problema específico.


Como destaca McKinsey, la gama de funciones que ofrece la IA es amplia: “La buena noticia es que las soluciones basadas en la IA están disponibles y son accesibles para ayudar a las empresas a lograr un rendimiento superior en la gestión de la cadena de suministro. Las características de la solución incluyen modelos de previsión de la demanda, transparencia de extremo a extremo, planificación empresarial integrada, optimización de la planificación dinámica y automatización del flujo físico, todo lo cual se basa en modelos de predicción y análisis de correlación para comprender mejor las causas y los efectos en las cadenas de suministro”.


Del mismo modo, no sorprende que la IA y su hermana, la inteligencia de datos aumentada, aparecieran en el último resumen de los principales temas tecnológicos de la cadena de suministro de Gartner de 2021. Sin embargo, hasta 2022, los líderes de la cadena de suministro deben superar la exageración y la hipérbole para llegar a la verdad detrás de los titulares. ¿De qué se alimenta esta IA? ¿Hace el trabajo que necesitamos? ¿O cuando se abra la puerta, se encontrará con silbidos de decepción?

   Un robot obsesionado con los zapatos
   Visión e Inteligencia Artificial para el transporte de envases de vidrio

Comentarios

Barco carga puerto pexels (5)
Barco carga puerto pexels (5)
Transporte

Los graneles sólidos se recuperan en marzo tras las caídas de enero y febrero y cierran el trimestre con un aumento de una décima respecto al mismo periodo del año anterior, hasta 20,3 millones de toneladas. 

Kuehne
Kuehne
Logística

La facturación neta de logística marítima superó los 2.600 millones de euros, en Air Logistics llegó hasta más de 1.900 millones de euros, en Road Logistics ascendió a 927 millones de euros y en Contract Logistics alcanzó los 1.278 millones de euros.

Farmavenix Superficie frigorífica
Farmavenix Superficie frigorífica
Logística

El operador de soluciones logísticas globales de Cofares cuenta con una red GDP de más de 60.000 palés almacenados y un potencial de frío 2/8 superior a los 4.000 huecos. 

Vista panorámica de la plataforma de Illescas
Vista panorámica de la plataforma de Illescas
Inmologística

En una nave de 58.821 m2 de superficie bruta alquilable (SBA) que se encuentra sobre una parcela de 98.500 m2. La doble certificación se debe a las medidas sostenibles para mejorar la operatividad energética de las instalaciones.

Element Logic AutoStore robot ELE 00588 (4)
Element Logic AutoStore robot ELE 00588 (4)
Intralogística

ABCO Systmens ha desarrollado una sólida trayectoria suministrando sistemas de estanterías, entreplantas de picking y soluciones de almacenamiento, al tiempo que ampliaba sus capacidades de automatización.

Wiferion PM Hik Robots Bild 2
Wiferion PM Hik Robots Bild 2
Intralogística

Esto facilita la operación de flotas mixtas de AMR y reduce los costes de inversión en diferentes infraestructuras de carga. “Con la carga inductiva, estamos creando un suministro de energía con garantía de futuro para nuestros AMR. Nuestros clientes se benefician de una mayor eficiencia, mayor flexibilidad y una tecnología que se ha consolidado como un estándar en la industria”, concluye Wang. 

Rockwell
Rockwell
Intralogística

La autonomía total de los AMR permite que reaccionen en tiempo real a los cambios en el entorno gracias a sus sensores, cámaras y algoritmos de navegación avanzada. Esto supone una gran ventaja con respecto a los AGV.

Puerto de castellón
Puerto de castellón
Transporte

El granel líquido ha crecido un 2,9%, el granel sólido se eleva un 29%, la mercancía general un 22,2% y la mercancía en contenedor registra una subida del 25%. Por último, aumenta un 36,7% en contenedores.

Schoeller
Schoeller
Intralogística

La nueva empresa se asentará en Dublín (Irlanda) y estará dirigida por Alan Walsh, actual consejero delegado de IPL. La operación se espera que se cierre durante el tercer trimestre de este año. 

Consulta nuestra nueva edición
NÚMERO 301 // 2025
Consulta la edición del 25º Aniversario
NÚMERO 279 // 2022

Empresas destacadas

Acepto recibir comunicaciones comerciales relacionadas con el sector.

REVISTA